
DRAFT
CHAPTER

8
Decision trees

Decision trees are another popular and powerful function type for supervised learning. One advantage of
decision trees is that they produce very interpretable decision rules; they are easy to evaluate ”by hand”,
so that the factors that went into the class decision can be easily stated. In a decision tree, the functional
form corresponds to a nested sequence of “if-then-else” decisions.

Start with discrete (binary) features? Example?

Initially, let us assume that the features x(i) are all continuous-valued; we will discuss discrete-valued
features in the sequel.

For example, a simple predictor

MORE; example function and tree and output

8.1 Predictor form

More generally, at each node of the tree, we perform a comparison based on the data point’s features
– typically, this depends only on one feature of x(i) – and branch on the result. For continuous-valued
features, we can compare the feature’s value to some threshold t.

For discrete-valued features, there are a number of possible variations on this template. If the decision
tree is allowed to have more than two children per node, one option is to branch on each possible value
of the feature. For example, a comparison of a discrete feature could have one child per possible value;
however, this means that the branching and overall size of the tree can depend on the cardinality of the
features selected, and generally complicates implementation.

For binary trees, another option is

A common choice to make the same procedure work easily with both continuous- and discrete-valued
features is to apply the same thresholding comparisions previously discussed. If the discrete values have
an ordinal nature (e.g., discrete categories corresponding to a user’s age, so that higher categories indicate
older users), this may make sense; alternatively, if the features are pre-processed and converted to a one-
hot representation, a single-feature threshold will correspond to branching on one

31

DRAFT

32 CHAPTER 8. DECISION TREES

Algorithm 8.1 BuildTree(D): Greedy training of a decision tree

Input: A data set D = (X,Y).

Output: A decision tree.

if LeafCondition(D) then
fn = FindBestPrediction(D)

else
jn, tn = FindBestSplit(D)
DL = {(x(i), y(i)) : x

(i)
jn

< tn} and DR = {(x(i), y(i)) : x
(i)
jn
≥ tn}

Set left and right children to trees given by BuildTree(DL), BuildTree(DR), respectively.
end if

Algorithm 8.2 FindBestSplit(D)

Input: A data set D = (X,Y) of size m and impurity function H(·).

Output: A split j∗, t∗ minimizing impurity H

Initialize H∗ = 0
for each feature j do

Sort {x(i)j } in order of increasing value
for each i such that x(i) < x(i+1) do

Compute pLc = 1
i

∑
k≤i 1[y

(k) = c] and pRc = 1
k−i
∑

k>i 1[y
(k) = c]

Set H ′ = i
mH(pL) + m−i

m H(pR)
if H ′ > H∗ then

Set j∗ = j, t∗ = (x(i) < x(i+1))/2, H∗ = H ′

end if
end for

end for
Return j∗, t∗

8.2 Training decision trees

In this section, we turn our attention to how the parameterized form of a decision tree can be learned
from data. Unfortunately, the threshold operation of a decision tree is discontinuous, making it difficult
to apply gradient descent; and the nested branches make it similarly difficult to define a smooth surrogate
(such as we used for linear classifiers) for training. Instead, we typically use a greedy selection process,
described next.

8.3 Decision Tree Classifiers

A decision tree classifier consists of a sequence of ”comparison nodes”, at which a single feature of the
data point is examined. For a continuous-valued feature, the decision node compares the feature value
to a threshold, and depending on whether the value is above or below the threshold, recurses down the
decision tree to the left or right. At some point, this process reaches a ”decision node”, at which one of
the possible class categories is output.

For discrete-valued features, it does not really make sense to ”threshold” a value. Instead, there are a
number of possible options. The most straightforward is to have one child node per possible feature value.

DRAFT

8.4. LEARNING DECISION TREES 33

TBD

However, this results in a non-binary tree, possibly with a high branching factor, and can complicate the
score function used in learning (see discussion in Duda and Hart). Another possibility is to keep the
binary tree shape, in which case some discrete values are assigned to the ”left” and all others to the
”right” child.

8.4 Learning Decision Trees

Each comparison node of a decision tree consists of the selected feature index, and a threshold for com-
parison. Typically, we determine the values of these parameters by a simple exhaustive search, looping
over all possible features and all possible thresholds and evaluating some score function, then picking the
parameters that result in the best score. Note that, although the threshold is a continuous value, there are
only a finite number of possible decisions to make on a given training set. In particular, when the training
data are sorted along the feature being considered, any threshold falling between two given data points
results in exactly the same rule on the training data, and thus are typically indistinguishable. We can thus
enumerate the number of unique thresholds, and typically pick the mean of the two nearest data points as
the value.

Score functions

The purpose of a score function is to decide how good any particular split is. You might think that the
classification accuracy would make a good score function, since minimizing it is our true goal. However,
as usual, classification accuracy is not particularly well behaved. It will often focus on selecting ”very
specialized” rules that try to get one more data point correct, rather than trying to split groups of data in
a more holistic way. Also, among rules that do not get any additional data points correct, it provides no
guidance whatsoever.

One useful score function is based on the entropy of the class values within each subtree. The empir-
ical entropy, measured in bits, for a data set (S) is given by

H(pS) = −
∑
y

pS(y) log2 pS(y)

where pS(y) is the empirical distribution of the class value y, i.e., the fraction of data in set S that have
class y.

How does entropy help us decide on a partitioning? We can use entropy to calculate the so-called
”expected information gain”, which is the average reduction in entropy we see when we adopt some data
split. In particular, suppose that we split a data set S into S1, S2 with S = S1 ∪ S2. We compute the
expected information gain as

IG(S1, S2) =
|S1|
|S|

(
H(pS)−H(pS1)

)
+
|S2|
|S|

(
H(pS)−H(pS2)

)

DRAFT

34 CHAPTER 8. DECISION TREES

A common alternative to entropy is the so-called ”’Gini index”’, which measures the variance of the
class variable, rather than its entropy. The Gini index equivalents of the above equations are:

Hgini(pS) =
∑
y

pS(y)(1− pS(y)) = 1−
∑
y

pS(y)
2

IGgini(S1, S2) =
|S1|
|S|

(
Hgini(pS)−Hgini(pS1)

)
+
|S2|
|S|

(
Hgini(pS)−Hgini(pS2)

)
Again, H is at its minimum (zero) when the variable y is deterministic (a single class) within the subset
S, and IG measures the gain, or increase in determinism, caused by conditioning on the split into subsets
S1, S2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Entropy

Gini

Figure 8.1: Shannon entropy and Gini im-
purity for binary classes. The two functions
are nearly indistinguishable as a function of
p = p(y = 1), leading to broadly similar be-
havior during training.

Both the (Shannon) entropy and the Gini index are widely
used impurity scores; which is used is largely a matter of
taste. For binary-valued classes, both scores are extremely
similar (see Figure 8.1) in their values, ranging from zero at
p = 0 or p = 1 (all one class), and reaching their maximum
at p = 1

2 (data equally distributed between the two classes).
Although even slight differences in impurity score functions
can lead to different choices of which split to perform next,
both score functions encourage the same general behavior: a
preference for splits which lead to large sets Si in which one
class is heavily dominant.

Computational complexity? nm log(m) root; then
two children are nmL log(mL)+nmR log(mR) < n(mL+
mR) log(m) = nm log(m). So max depth d: < O(dnm log(m)).

Complexity Control and Pruning

The complexity of a decision tree is essentially determined by its depth. (How many parameters can a
binary decision tree of depth d have?) We may therefore want to control this complexity by reducing the
depth. Common stopping rules include not proceeding past some maximum depth d, or not continuing
to split nodes of the tree that have fewer than K training data points associated with them (since we may
not trust our ability to learn a general rule based on so few data).

Reducing complexity may be particularly desirable if we feel that the extra depth did not significantly
improve our performance. It is often hard to tell whether a split will significantly improve performance
when the tree is initially being constructed. For example, it is easy to make examples where one split
provides no measurable gain in accuracy or score, but allows the next level’s split to have significant
gains. For this reason, one usually constructs the entire tree and then ”prunes”. Given the full decision
tree, we start at the leaves and walk upward, checking whether each parent had an accuracy nearly equal
to that given by its children. If the gain is below some threshold, we prune the children and continue
upward; if not, we cease recursing for this node or its ancestors.

DRAFT

8.5. DECISION STUMPS 35

(a)

(b)

(c) 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

Figure 8.2: Complexity control of a decision tree using (a) maximum depth; (b) minimum number of data
points required to form a parent (internal) node; (c) minimum number of data points required to form a
leaf (decision) node.

8.5 Decision Stumps

A decision ”stump” is a single-layer decision tree, i.e., a threshold value applied to a single feature.
Although an extremely weak learner (it can only represent extremely simple decision boundaries), it is
commonly used in techniques that leverage many weak learners to create a single more powerful learner,
such as ensemble methods.

	Support vector machines
	Linear SVMs
	Lagrangian Optimization and Duality
	Soft Margin SVMs
	The Kernel Trick

